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The purpose of this paper is to propose that the notion of the conceptual metaphor, as defined in the theoretical framework of embodied learning, can have a role in the construction of children’s arithmetic and, in particular, in their invention of calculation strategies. In doing so it acknowledges the role of the sensory perceptual world in the development of children’s arithmetic. A Piagetian framework makes a distinction between an embodied world of learning and the operational world of arithmetic. The two theoretical frameworks are compared in relation to children’s realisation of the equality of commuted pairs in addition. The proposal is that the conceptual metaphor can be seen as an additional cognitive tool to explore children’s analogous reasoning in abstractions from the results of operations. The potential of the conceptual metaphor in this role would be to provide a theoretical framework to explore children’s development of arithmetic in terms of their everyday, perceptual experiences. In doing so it supports the notion of analogy as a key part in the creative process of arithmetic. 

Introduction

There is much evidence that young children invent their own procedures in arithmetic (Carpenter and Moser, 1984; Steinberg, 1985; Kamii, Lewis, and Jones, 1993; Foxman and Beishuizen, 1999) and that these are based on flexible strategies such as ‘splitting’ or ‘complete’ number methods (Beishuizen, Van Putten and Van Mulken, 1997 and Fuson, 1992). It has been suggested that more able mathematicians recognise the economy of these flexible strategies whereas lower attaining children rely on inefficient procedural counting strategies (Baroody and Ginsburg, 1987; Gray, 1991). 

Research within the Piagetian framework has proposed that children’s invented arithmetic procedures are evidence of operative schemes that involve mental operations or ‘interiorized action’, abstracted through layers of reflective abstraction (Steffe, 1983). Gray and Tall’s (1994) model proposed that the move from the physical act of counting to the use of number in arithmetic is achieved through ‘compression’ of the process of counting. In this way the word three is not just a counting word, it is also ‘compressed’ into the concept of three as an ‘economical unit’ that can be held both as a focus of attention and as an access to the process of counting. This view of numbers as both a process and a concept is termed ‘proceptual’.  Gray and Tall have suggested that the diverging ability in calculations can be explained by a ‘proceptual divide’. The more successful child will be ‘in tune’ with the flexible notion of ‘procept’ whereas the less successful child will rely on the process of counting. 

In a similar way Sfard (1991) had theorised on the dual nature of process and object. She proposed that mathematical ability was explained as being capable of ‘seeing’ ‘invisible objects’. Such mathematical notions were not only referred to structurally as objects but also as operational concepts arrived at through processes. In this way “the ability of seeing a function or a number both as a process and as an object is indispensable for a deep understanding of mathematics…” (p. 5).  Reification describes the ability to see a process as a ‘fully-fledged’ object which allows the user to manipulate the object as a whole. 

Dubinsky’s (1991) notion of ‘encapsulation’ described, in a similar way, how ‘process’ leads to a ‘mental object’ in advanced mathematical thinking. As such reflective abstraction has become established as a cognitive tool for the construction of mathematical objects both at an advanced level of mathematical thinking and at a more elementary level where children develop a proceptual view of number that supports their use of flexible strategies in arithmetic. 

Relatively recent research presents the role of embodiment in the construction of mathematical ideas. Theorists such as Johnson (1987) and Lakoff and Nunez (1997) have put forward a theoretical viewpoint that acknowledges the building of abstract knowledge from the embodied world. Johnson reinforced the “indispensability of embodied human understanding for meaning and rationality” (p.xv) and, from an arithmetical perspective, Lakoff and Nunez explored mathematical reasoning as a product of bodies and brains. 

Within the embodied learning framework, metaphorical projection is presented as a mechanism to work up from sensory experiences to abstract concepts, to bring abstract concepts into being. In the embodied learning perspective the term metaphor is not just seen as a linguistic device to communicate an idea. Metaphors are seen as conceptual, as mental constructions that play a constitutive role in structuring our experience and shaping imagination and reasoning (Lakoff, 1980). Such conceptual metaphors can play a part in representing a piece of knowledge in our mind. Sfard (1994) used the abstract concept ‘love’ as an example and how we may refer to perceptual experiences, such as ‘warming our hearts’, to provide a more direct, immediate understanding of the abstract concept of ‘love’.  In the same way the conceptual metaphor can be used to map an abstract mathematical idea onto a more concrete representation. Based on collages of pre-mathematical frames such as ‘in’, ‘next’, ‘together’ the conceptual metaphor becomes a “powerful tool for knowing something” (Davis, 1984, p.177).  We can employ a common repertoire of pre-mathematical frames based on sensory experiences such as motion, sharing, giving and receiving to develop sophisticated mathematical ideas. 

From an embodied learning perspective Davis has suggested that the good mathematicians have synthesised abstract mathematical ideas from the pre-linguistic schemas that are common to all of us. The child who can make the analogous link and see the resemblance with other everyday experiences may be more likely to use arithmetic in an inventive way.  

This paper proposes that the conceptual metaphor may also be seen as a cognitive tool in the development of children’s flexible use of arithmetic and invented strategies.  In order to explore this phenomenon we will first need to consider how children may come to use invented strategies that rely on intuitive knowledge of arithmetic principles such as commutativity and associativity.   In order to make a case for the role of the conceptual metaphor we will also need to compare and contrast the two theoretical frameworks in relation to children’s intuitive knowledge of the arithmetic principles. 

Flexible strategies and the implicit use of principles of arithmetic.

A hierarchy of children’s development of arithmetic such as Gray’s (1991) now seems fairly established.  Children’s early addition strategies are often based on counting procedures.  Often the first strategy is a ‘count-all’ strategy. Given two sets of elements, set A and set B, with known cardinality the child will count set A and then continue onto set B in order to find the total number of elements in both sets. A further strategy involves the child’s use of the principle of cardinality. The cardinal value of the first set, A, is taken as a starting value to ‘count-on’ the second set, B. Further to this a child who uses the ‘count-on’ strategy may realise that putting the larger cardinal value first reduces the steps needed to count on. For example, given the problem 2 + 7, the child may swap the values to 7 + 2 as this will make the ‘count on’ more efficient. This assumes commutativity in that 2 + 7 = 7 + 2 or, more formally a + b = b + a.  Although still relying on a counting procedure there is an implicit use of an arithmetic principle in order to use a more economical strategy.  

Further strategies involve the use of known arithmetic facts to derive new ones. These facts are often used in an innovative way as children develop their own invented procedures.  Beishuizen et al (1997) and Fuson (1992) have identified two main types of invented procedures. One type of procedure involves ‘splitting’ numbers and deals with tens and units separately. For example in the calculation 23 + 4, a child may add the 3 + 4 and then add to the 20. The second type of procedure involves starting with a ‘complete’ number. For example 24 + 7 a child may keep the 24 complete but split the 7 into 6 and 1. That is 24 + 7 = 24 + (6 + 1) = (24 + 6) + 1. Another example might be 54 + 13 = 54 + (10 + 3) = (54 + 10) + 3. Such ‘split’ number or ‘complete’ number procedures assume associativity in that (20 + 3) + 4 = 20 + (3 + 4) or formally (a + b) + c = a + (b + c).  

It is possible that children develop an implicit use of the principles through instruction in mental calculation strategies and/or formal standard algorithms as part of the elementary school curriculum. However there is evidence that prior to or in the absence of direct instruction young children will devise their own procedures that assume mathematical principles. Groen and Resnick’s (1977) empirical work with 4- year olds showed that, even though instruction in addition was limited to the ‘count-all’ strategy with physical objects, many children soon abandoned this and initiated the ‘count-on’ strategy. They also found that many of the children chose to start with the larger number even though they had not received any instruction in this. These children were implicitly using the commutative principle to carry out a more efficient strategy in arithmetic. 

It is unlikely that children would arrive at an understanding of arithmetic principles such as commutativity through simple discovery from extensive practice of addition problems (Resnick, 1983). If this were the case the children would know the commuted equivalent pairs as retrievable facts. If they knew these as retrievable facts they would not need the counting procedure and so the economy of commuting pairs would be redundant.  As there are children who use the ‘count-on’ procedure and also recognise the economy of commuting pairs of numbers, there must be some process whereby these children abstract the principles without having determined the solutions to the commuted pairs in advance of the calculation. It is possible that children come to assume that arithmetic operations are commutative as they realise the principle of order irrelevance (Gelman and Gallistel, 1978) and apply this to addition. 

“Addition in the child’s view, involves uniting disjoint sets and then counting the elements of the resulting set. According to the order irrelevance principle it does not matter whether in counting the union you first count the elements of one set and then the elements from the other or vice versa” (p.191). 

Children’s invented procedures are often based on arithmetical principles such as commutativity even though these principles have not been directly taught in the early years of schooling.  Early flexible strategies such as ‘counting-on from the larger number’ may be based  on this untaught knowledge and that children have come to realise through the manipulation of objects that this is a more efficient method. When extended to three sets, associativity may also be realised and used implicitly in flexible strategies such as ‘splitting’ and ‘jumping’.  

Reflective abstraction and arithmetic

Through the realisation of the order-irrelevance principle it is possible to explain how children may come to use untaught flexible strategies based on commutativity and associativity.  Models from theorists such as Steffe, Gray and Tall would suggest that this realisation is within the Piagetian framework of reflective abstraction where reflective abstraction describes an operation on a mental entity that becomes in turn an object for reflection at the next level, allowing for further mental operations (Gray, Pinto, Pitta, and Tall, 1999). 

Piaget saw reflective abstraction as having two stages: abstraction reflechissante and reflexion. Reflechissante is used to describe the first phase where a structure from a lower developmental level is projected onto a higher level, and reflexion is used to describe the second phase where knowledge is reorganised and integrated into existing knowledge. As the two terms have little distinction in an English translation, Campbell (Piaget, 2001) used the terms projection in relation to Piaget’s first phase and reflection for the second phase. Projection draws its information from coordination of objects. Reflection, as the second order, is where a child reflects on the products of projection.  

Piagetian theory distinguishes reflective abstraction from the more primitive notion of empirical abstraction.  Whereas reflective abstraction draws its information from the coordination of objects, empirical abstraction draws its information from the properties of objects themselves, the observable features that we come to know through perceptions. Empirical abstraction describes the unconscious abstractions from the sensory-motor elements experienced by an infant. 

Although a two-stage hierarchical process of projection and reflection, reflective abstraction does not draw its information from the sensory, physical experiences of empirical abstraction but from the coordination of the objects. Empirical abstraction has no parallel hierarchy. That is, there is no empirical abstraction from the results of previous empirical abstraction (Piaget, 2001). There is no projection from perceptual knowledge and so perceptual knowledge is not seen as the source of new constructions.

In a child’s understanding of number and arithmetic, abstractions are not based on perceptual information received from experience with the world. The notion of number is not supplied by the senses so there is a need to attend to non-perceptual properties of the objects. Abstraction of this form is termed pseudo-empirical.  It draws its information from apprehending the properties that are presented by an object but where the properties were introduced by previous actions.  The focus is on the actions of the objects and the properties of those actions. The child may be ‘leaning’ on the perceivable results but the perceived properties have been introduced by the child’s actions. This entails a level of reflection. 

In Piaget’s work on the conservation of number and commutability, abstraction is based on the acts of counting. The source is the coordination of the actions of counting and the manipulation of objects.  From a Piagetian perspective the coordination of objects may impress on a child that there is a reason for a particular result (Piaget, 2001). Hence a child’s impression or assumption of commutativity is a ‘quasi-necessity’. There is no longer a need to check for the same result for commuted pairs. From a Piagetian perspective ‘quasi-necessity’ is the first manifestation of reflective abstraction and, as such, is seen as distinct from the sensory, perceptual world of the child.  

We have seen that in the Piagetian framework order irrelevance and the arithmetic principles are realised through reflective abstraction that does not draw its information from the sensory perceptual world of a child but from the coordination of objects. Further the Piagtian framework sees the notion of number as a non-perceptual property that has been imposed by the child on the objects. As the notion is non-perceptual there is no connection to the perceptual embodied world of the child.  Although an important cognitive stage, the sensory-motor experience of a child is not built on in developing an abstract world of arithmetic. 

This distinction between figurative structural thought and operational thought is deeply rooted in Piagetian theory (Sfard, 1991) and has been elaborated by the role of processes and objects in the theories of encapsulation and compression. The static figurative representation of a geometrical idea can be appreciated prior to the use of a process. Sfard provides the example of the idea of ‘roundness’ before using the algorithm for obtaining a circle. Tall (2004) also acknowledged how geometrical notions such as the abstract idea of a straight line can be related to physical senses and real-world objects but that number is part of a symbolic world where actions are encapsulated as concepts. A process such as counting is a precursor to the cardinal notion of number and has operational, not structural, roots. In arithmetic ‘process’ is seen to precede ‘object’ and the development of mathematical notion of ‘compression’ of processes into concepts is seen as distinct from the sensory, perceptual focus on the objects themselves. Although a sensory or embodied experience that relates to physical senses and actions is seen as part of the cognitive growth it is seen as a distinct phase in arithmetic. 

Embodied Learning and Arithmetic

Embodied learning, on the other hand, provides a framework that acknowledges the role of the figurative or perceptual in the building of abstract ideas in arithmetic. Within this framework the conceptual metaphor is seen as a cognitive tool through which all mathematical ideas are developed. Conceptual metaphors are seen as mental constructions that play a constitutive role in structuring our experience and shaping imagination and reasoning (Lakoff, 1980). Conceptual metaphors inform analogical mappings from the concrete or physical concepts of source domains to more abstract target domains such as the world of number. In mapping from the source domain to the target domain the source provides the conceptual domain from which we draw the metaphor and the target is the domain that we are trying to understand. In this way conceptual metaphors are more closely related to physical and neural development and interaction with the body within the world. 

Lakoff and Nunez’s (2000) analysis of mathematical ideas suggests an elaboration of simple ideas such as containment though the projection of metaphors into the abstract world of number and arithmetic. Everyday commonplace metaphors such as object collection and object construction are projected onto the number world. Grounding metaphors such as ‘Arithmetic is Object Collection’ and ‘Arithmetic is Object Construction’ map the metaphors of the physical world onto the number world. 

From the properties of object collections we can determine equal results through different operations in the construction of the collection and this allows us to see that the same collection results from any order.  More specifically, the knowledge that combining object collections A and B in the physical world give the same result as adding B to A can be mapped onto the number world. This would be similar for three sets. Other everyday experiences show us that there are various ways to get the same results and suggest an Equivalent Result Frame. The conflation of these grounding metaphors, Arithmetic is Object Collection and Arithmetic is Object Construction, with the Equivalent Result Frame would explain the emergence of commutativity and associativity in children’s arithmetic. 
The notion of embodied learning proposed by Johnson (1987) and Lakoff and Nunez (2000) suggests that mappings are motivated by image-schemas (pre-linguistic schemas concerning space, time, movement) that are embodied in human experiences. In their analysis of mathematical ideas Lakoff and Nunez (2000) have proposed that conceptual metaphors allow “us to reason about one kind of thing as if it were another” (p.6). Basic ideas such as containment, the collection of objects, adding to and taking away from collections are grounding metaphors which link physical sensory experiences with more abstract ideas. Conflation with the more abstract linking metaphors allows us to make connections within the mathematics itself. 

Analgogy and the focus of attention

So far we have a dichotomy between the two frameworks as they are used to explain a child’s understanding of number and arithmetic. The embodied learning framework proposes that the conceptual metaphor is a cognitive tool to build from concrete, sensory experiences to the abstract world of number and arithmetic. The Piagetian framework of abstraction makes a distinction between the sensory perceptual world of the child and the abstract world of number. The embodied learning framework would suggest a ‘mapping’ from structural figurative thought to abstract mathematical objects. The Piagetian theories would suggest that abstract mathematical objects are arrived at through operational thought that is distinct from figurative structural thought. 

The embodied theory proposes a conceptual system as a produce of conceptual metaphors that may “transfer the bodily experiences into the less concrete realm of ideas” (Sfard, 1994, p.46).  But can a claim be made that metaphorical projection is a simple comparison of parallel cases from the perceptual to the abstract?  As Sfard goes on to point out a simple comparison between the concrete and the abstract would not seem possible. It is difficult to see how the perceptual attributes of objects could support the realisation of an abstract notion such as commutativity. 

Take the example of a boy known as Case provided by Baroody and Ginsburg (1987).  Case appeared to be uncertain of applying commutativity to his addition procedures. When asked if commuted pairs such as 6 + 2 and 2 + 6 would add up to the same thing or something different, Case’s response was that the pairs were ‘almost the same but different’. When asked to add 2 + 7 and 7 + 2 Case seemed uncertain whether the commuted pairs were equivalent or not and carried out counting procedures with both pairs to check. Why would he say ‘almost the same but different’?  We do not know for certain why Case responded with the statement but it is tantalising to speculate. 

If Case was focusing on the material objects themselves then his uncertainty might have been due to his focus on the perceptual details of the objects – colour, shape or even taste. After all a collection of nine sweets, such as two ‘Smarties’ and seven ‘Liquorice Allsorts’ would appear as a different collection to seven ‘Smarties’ and two ‘Liquorice Allsorts’.

Pitta’s (1998) empirical work with young children and counting cubes suggested that the more able children attended to the inherent mathematical qualities, such as the notion of five when asked to say what was important about the set of objects. The less able children who did not use efficient strategies in their arithmetic would focus on the concrete experiences such as pattern or colour, thus suggesting that some children did not know what was relevant to focus on.  They were not aware of which aspects to reduce in order to define a concept. Polya (1973) proposed that in order to “get down to clear concepts, you have to define the analogy” (p.13). 
 In any analogy there are two analogues: the target analogue that is the domain to be explained or understood and the base analogue that serves as the source of knowledge.  It is not the simple identification of overlaps but rather “a relational structure that normally applies in one domain that can be applied in another domain” (Gentner, 1983, p.156). Analogical reasoning requires that in the mapping process structural relations hold for both the source and the target domain.  What is important is that the mapping is used in a “structurally consistent manner across the connected systems within the base and target” (Gentner, Holyoak and Kokinov, 2001. p.216). Analogy as a structural relationship requires the identification of attributes that determine similar causal relationships. There is a need to find the global interpretation. In mapping from the object collection metaphor of the physical world to the world of numbers the physical attributes would not help to make sense of the situation. They would not provide a global interpretation and allow a ‘structure-mapping’. The child needs to reject the detail of the objects and focus on the structural relations 

In order to abstract the relational structure in the development of arithmetic the physical attributes of the objects are not focused on. From a Piagetian perspective the focus is on the coordination of the objects.  Thought is operational and no longer focuses on the rich detail of the objects but on the coordination of the objects.  

Maybe Case is not focusing on the material attributes but is viewing the objects in an operational way. Maybe, instead, his focus is on the process. This may also cause uncertainty. In carrying out an operation on the objects the process of starting with two objects and adding seven is different to starting with seven objects and adding two.  Again Case may see the process as ‘almost the same but different’. 

A further possibility is that the child needs to reject the detail of the process. The analogous mapping is not on the process itself but on the result of the process. The coordination of objects in different situations needs to be experienced but the global interpretation is in the equivalence of the results. Lakoff and Nunez’s metaphor, ‘Equivalence Result Frame’, would constrain the global interpretation. The example given by Lakoff and Nunez, ordering a take away by phone and having it delivered to your home, would seem a very different process to collecting it from the restaurant yourself and taking it home. However the result is the same. You have a satisfying and tasty meal to eat. In the example of commutativity the process of starting with two objects and adding on seven objects is different to starting with seven objects and adding on two objects but the result is the same. You have a collection of nine objects.  The global interpretation is of an equivalent result. The coordination of objects has to be carried out to experience the different processes but it is the metaphor of an equivalent result that is focused on in the analogy. 

In the emergence of the implicit use of arithmetic principles, the everyday experiences of containment, object collection and object construction may be mapped onto the mathematical metaphors of object collection and construction in the world of numbers and are blended with the everyday experience of equivalence to inform the assumption or conviction that there is an equivalent result with commuted pairs. There is no longer a need to check the result will be the same.  The everyday experience of equivalence provides the global interpretation and allows the structure mapping from the source domain to the target domain. There is a sense that the results will be the same due to the familiarity with experiences from the concrete world.  

Sfard’s (1994) research into mathematicians’ views of how they achieve true understanding of a mathematical concept often indicated how true understanding was a certainty, a sense of ‘intimate familiarity’ and that this feeling makes it possible for them to have “direct insight into the properties of mathematical objects” (p. 49). The respondents often referred to a personification metaphor which helped to predict the behaviour of abstract concepts.  In this light Sfard re-examined the notion of reification to include the notion that the process-object path may not be always be followed.  Within the framework of the structural embodied schema reification may be from an appropriate metaphor of an ontological object. 

Although in our example Case is working at a much more elementary level his understanding of commutativity may not solely be through operational reasoning and reflection on the process but also through analogical reasoning on the equivalent results of the process as an ontological object, a familiar known experience. The conceptual metaphors of everyday experiences of equivalent results may help a young child grappling with initutive ideas such as commutativity to feel familiar with the situation and to make sense of the abstract mathematical notion. 

The recurring pattern of metaphorical development allows us to differentiate natural sense-making from the unnatural that does not make sense. These are reflections back to a ‘resemblance’ with experience-based ideas that we are familiar with. This helps to feel that the mathematics makes sense. In this way the reflection of bodily experiences is analogous. According to theorists such as Johnson, metaphorical structures provide a basis for meaning relations and inferential patterns in our reasoning and through our examination  of commutatvity it is proposed that this can also relate to children’s learning in arithmetic.  Sfard (1991) has commented on the dual nature of the process and object viewpoints. Structural thought is seen as having a complementary role. With the notion of the conceptual metaphor it may be possible to further understand how the analogical basis of structural thought plays a role in the reification of an object. Such a proposal would acknowledge the role of the figurative embodied world in the building of abstract concepts in number. 

Conclusion

Piagetian theorists have proposed that the process-object pathway and opertational thought is fundamental to our understanding of mathematical concepts in arithmetic. This theory makes a distinction between the sensory embodied world of the child and the abstract, symbolic world of number. On the other hand, embodied learning theorists have proposed that, through analogical reasoning and metaphorical projection, the embodied world can play a role in our understanding of the abstract world of number. An embodied learning theory proposes a mental schema. Instead of the rich image of detail in concrete objects an embodied schema is general and malleable. Metaphorical projection is seen as the mechanism to move from the concrete image of detail to the general structural view of the objects. These “links have a power of creating meaning” (Sfard, 1994, p. 46) for abstract ideas by referring back to perceptual experiences in a structurally consistent way. By relating back to generalised notions or global interpretations from experiences that children do understand, they can make sense of the world of number. A mathematical principle such as commutativity may be realised not only operationally but also analogically by familiarity with other structural notions of equivalence from everyday experience. 

The recognition of the elaboration of abstract ideas in arithmetic from sensory experiences may provide a theoretical framework for examining the connections between children’s informal knowledge and the formal world of number. The issue of divergence in children’s use of arithmetic remains a concern for educationalists. Some children may stay with counting procedures, unable to use the more flexible and economical invented procedures successfully. At this stage we cannot claim that the analogous nature of metaphorical projection explains the divergence in abilities but as many children find it difficult to work with number in a flexible way it seems worth investigating. As yet little is known how metaphors are processed (Gentner et al, 2001) but the conceptual metaphor may provide a lens to investigate children’s abstraction in arithmetic and give insight into the role of children’s everyday pre-mathematical ideas.  

Analogy has been recognised as a cognitive mechanism involved in creative thinking.  It has been seen as a mental mechanism for combining and recombining ideas in novel ways (Holyoak and Thagard, 1995). Metaphorical projections have been claimed as providing insights and ‘mental leaps’ in building scientific theories. One of the most common examples is that of Kekule in the field of biochemistry who proposed a new theory of the molecular structure of benzene following a dream that contained the mental image of a snake biting its own tail. 

It is not claimed that analogy and the role of the conceptual metaphor are the only cognitive mechanism but they could be examined along with the process-object model to help understand how children make sense of the mathematics presented to them in the classroom. How and if such metaphors can explain the insights and sense making in the mathematics of young children as they move to invent ways of using number in arithmetic, has yet to be explored. 
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